1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
//! `Parser` is a `TokensProcessor`, it takes `Tokens` in a classical
//! infix form and transforms them into Reverse Polish Notation
//! form for further evaluation.

use super::*;
use std::collections::BTreeMap;

/// Defines operator associativity.
///
/// If two operators have the same precedence (priority), the order
/// of their evaluation is defined by their associativity.
/// A left-associative operator evaluates a left hand side before evaluating
/// the right hand side. A right-associative operator evaluates a RHS before
/// evaluating LHS.
#[derive(PartialEq, Debug)]
pub enum OperatorAssociativity {
  /// Left associativity - `a O b O c` is evaluated as `(a O b) O c`
  Left,
  /// Right associativity - `a O b O c` is evaluated as `a O (b O c)`
  Right
}

/// Stores operator precedence and its associativity.
///
/// Both features are essential when parsing mathematical expressions.
/// An operator precedence defines its priority, operators with larger
/// precedence are evaluated before operators with smaller precedence.
/// An associativity resolves conflicts when two operators are of the
/// same precedence - a left-associative operator evaluates LHS before
/// RHS, while a right-associative operator evalutes RHS before LHS.
///
/// Knowledge of these features is required to properly convert infix
/// form into RPN.
#[derive(PartialEq, Debug)]
pub struct Operator(i64, OperatorAssociativity);

impl Operator {
  /// Creates a new operator with given precedence and associativity.
  pub fn new(p: i64, a: OperatorAssociativity) -> Operator {
    Operator(p, a)
  }
}

/// `Parser` takes `Tokens` in infix form and transforms them into
/// Reverse Polish Notation. After such transformation tokens
/// can be processed by `TokensReducer`.
///
/// Parser stores registered operators (with their precedence and
/// associativity) between multiple executions. Furthermore an
/// output buffer of `Tokens` is kept internally, so it can be reused
/// without allocating new memory from the operating system. If
/// Parser lives long enough this behaviour can greatly reduce
/// time wasted on mallocs.
///
/// # Examples
///
/// ```
/// # use xxcalc::tokenizer::Tokenizer;
/// # use xxcalc::parser::{Parser, Operator, OperatorAssociativity};
/// # use xxcalc::{Token, StringProcessor, TokensProcessor};
/// let mut tokenizer = Tokenizer::default();
/// let mut parser = Parser::default();
///
/// parser.register_operator('+', Operator::new(1, OperatorAssociativity::Left));
///
/// let tokenized = tokenizer.process("2+2");
/// let parsed = parser.process(tokenized).unwrap();
///
/// assert_eq!(parsed.tokens, [(0, Token::Number(2.0)),
///                            (2, Token::Number(2.0)),
///                            (1, Token::Operator('+'))]);
/// ```
///
/// # Extending
///
/// One could embed the parser inside another `TokensProcessor` and initialize
/// it there with some default operators.
pub struct Parser {
  operators: BTreeMap<char, Operator>,
  output: Tokens
}

/// Creates a new default Parser.
///
/// Such parser is not ready to parse complex infix notation
/// by default. No operators are registered by default, one
/// must define operators with their precedence and associativity
/// to be able of parsing complex mathematical expressions.
impl Default for Parser {
  fn default() -> Parser {
    Parser::new()
  }
}

/// This is a main processing unit in the parser. It takes
/// a tokens in infix form and converts them to RPN using
/// Dijsktra's shunting-yard algorithm.
///
/// Before processing expressions more complex than trivial
/// identifiers or numbers, operators must be registered.
///
/// This parser supports two argument operators and multiple
/// argument functions. Function arguments must be declared
/// between opening and closing bracket tokens, with their
/// arguments separated using separator token.
///
/// A popular Dijsktra's [shunting-yard algorithm] converts
/// infix to postfix notation (RPN) in a linear time O(n). It
/// pushes numbers and constants to the output, while using
/// a stack to store temporary operands until they are needed
/// to be pushed to the output as some other operator with smaller
/// precedence is found.
///
/// # Errors
///
/// An `EmptyExpression` error is returned when tokens represent
/// no meaningful expression (no tokens or just brackets).
///
/// ```
/// # use xxcalc::parser::Parser;
/// # use xxcalc::{Tokens, TokensProcessor, ParsingError};
/// let mut parser = Parser::default();
///
/// let tokenized = &Tokens::new(None);
/// assert_eq!(parser.process(tokenized).unwrap_err(), ParsingError::EmptyExpression);
/// ```
///
/// A `MissingBracket` error is returned when brackets are unbalanced,
/// no matter if they were used to mark subexpression or an argument
/// list.
///
/// ```
/// # use xxcalc::tokenizer::Tokenizer;
/// # use xxcalc::parser::Parser;
/// # use xxcalc::{StringProcessor, TokensProcessor, ParsingError};
/// let mut tokenizer = Tokenizer::default();
/// let mut parser = Parser::default();
///
/// {
///   let tokenized = tokenizer.process("(2");
///   assert_eq!(parser.process(tokenized).unwrap_err(), ParsingError::MissingBracket(0));
/// }
///
/// {
///   let tokenized = tokenizer.process("2)");
///   assert_eq!(parser.process(tokenized).unwrap_err(), ParsingError::MissingBracket(1));
/// }
///
/// {
///   let tokenized = tokenizer.process("foo(2, (2), -1");
///   assert_eq!(parser.process(tokenized).unwrap_err(), ParsingError::MissingBracket(3));
/// }
/// ```
///
/// An `UnexpectedToken` error is returned when parser encounters a token
/// with no meaning to the algorithm (such as `Token::Unknown`).
///
/// ```
/// # use xxcalc::tokenizer::Tokenizer;
/// # use xxcalc::parser::Parser;
/// # use xxcalc::{StringProcessor, TokensProcessor, ParsingError, Token};
/// let mut tokenizer = Tokenizer::default();
/// let mut parser = Parser::default();
///
/// // note that @ is not a valid operator, so it results in Token::Unknown
/// let tokenized = tokenizer.process("(2)@2");
/// assert_eq!(parser.process(tokenized).unwrap_err(), ParsingError::UnexpectedToken(Token::Unknown('@'), 3));
/// ```
///
/// An `UnknownOperator` error is returned when a parser encounters an operator
/// token, but this operator is not registerd with the parser.
///
/// ```
/// # use xxcalc::tokenizer::Tokenizer;
/// # use xxcalc::parser::Parser;
/// # use xxcalc::{StringProcessor, TokensProcessor, ParsingError};
/// let mut tokenizer = Tokenizer::default();
/// let mut parser = Parser::default();
///
/// let tokenized = tokenizer.process("(2)+2");
/// assert_eq!(parser.process(tokenized).unwrap_err(), ParsingError::UnknownOperator('+', 3));
/// ```
///
/// [shunting-yard algorithm]: https://en.wikipedia.org/wiki/Shunting-yard_algorithm
impl TokensProcessor for Parser {
  fn process(&mut self, tokens: &Tokens) -> Result<&Tokens, ParsingError> {
    let mut stack = TokenList::with_capacity(4);
    let mut iter = tokens.tokens.iter().peekable();

    self.output.clear();
    self.output.identifiers = tokens.identifiers.clone();

    while let Some(&(position, ref token)) = iter.next() {
      match *token {
        Token::Number(_) => self.output.push(position, token.to_owned()),
        Token::Identifier(_) => {
          if let Some(&&(_, Token::BracketOpening)) = iter.peek() {
            stack.push((position, token.to_owned()));
          } else {
            self.output.push(position, token.to_owned());
          }
        },
        Token::Operator(name) => {
          loop {
            match stack.last() {
              Some(&(_, Token::Operator(_))) | Some(&(_, Token::Identifier(_))) => {
                if self.lower_precedence(&token, &stack.last().unwrap().1) {
                  self.output.tokens.push(stack.pop().unwrap());
                } else {
                  break;
                }
              },
              _ => break
            }
          }

          if self.operators.contains_key(&name) {
            stack.push((position, token.to_owned()));
          } else {
            return Err(ParsingError::UnknownOperator(name, position));
          }
        },
        Token::BracketOpening => stack.push((position, token.to_owned())),
        Token::BracketClosing => {
          let mut found = false;

          loop {
            match stack.last() {
              Some(&(_, Token::BracketOpening)) => {
                found = true;
                stack.pop();
                break;
              },
              None => break,
              _ => self.output.tokens.push(stack.pop().unwrap())
            }
          }

          if !found {
            return Err(ParsingError::MissingBracket(position));
          }
        },
        Token::Separator => {
          loop {
            match stack.last() {
              Some(&(_, Token::BracketOpening)) => break,
              Some(_) => self.output.tokens.push(stack.pop().unwrap()),
              None => break
            }
          }
        },
        ref token => return Err(ParsingError::UnexpectedToken(token.to_owned(), position))
      }
    }

    loop {
      match stack.last() {
        Some(&(position, Token::BracketOpening)) => return Err(ParsingError::MissingBracket(position)),
        Some(_) => self.output.tokens.push(stack.pop().unwrap()),
        None => break
      }
    }

    if self.output.tokens.is_empty() {
      return Err(ParsingError::EmptyExpression);
    }

    Ok(&self.output)
  }
}

impl Parser {
  /// Creates an empty Parser with no defined operators.
  pub fn new() -> Parser {
    Parser {
      operators: BTreeMap::new(),
      output: Tokens::new(None)
    }
  }

  /// Registers operator identified by given name to the parser.
  ///
  /// Each operator must be registered and associated with its
  /// precedence and associative to make parser capable of valid
  /// RPN transformation. As operators always require two arguments,
  /// no arity is needed.
  ///
  /// If an operator with given name was already registered, it
  /// previous specification is returned.
  ///
  /// # Examples
  ///
  /// ```
  /// # use xxcalc::tokenizer::Tokenizer;
  /// # use xxcalc::parser::{Parser, Operator, OperatorAssociativity};
  /// # use xxcalc::{Token, StringProcessor, TokensProcessor};
  /// let mut tokenizer = Tokenizer::default();
  /// let mut parser = Parser::default();
  ///
  /// let r = parser.register_operator('+', Operator::new(42, OperatorAssociativity::Left));
  /// assert!(r.is_none());
  ///
  /// let r = parser.register_operator('+', Operator::new(1, OperatorAssociativity::Left));
  /// assert_eq!(r.unwrap(), Operator::new(42, OperatorAssociativity::Left));
  ///
  /// ```
  pub fn register_operator(&mut self, name: char, operator: Operator) -> Option<Operator> {
    self.operators.insert(name, operator)
  }

  #[inline(always)]
  fn lower_precedence(&self, a: &Token, b: &Token) -> bool {
    let &Operator(a_prec, ref a_assoc) = match *a {
      Token::Operator(name) => self.operators.get(&name).unwrap(),
      Token::Identifier(_) => return false,
      _ => unreachable!()
    };

    let &Operator(b_prec, _) = match *b {
      Token::Operator(name) => self.operators.get(&name).unwrap(),
      Token::Identifier(_) => return true,
      _ => unreachable!()
    };

    (*a_assoc == OperatorAssociativity::Left && a_prec <= b_prec) ||
    (*a_assoc == OperatorAssociativity::Right && a_prec < b_prec)
  }
}

#[cfg(test)]
mod tests {
  use TokensProcessor;
  use StringProcessor;
  use Token;
  use ParsingError;
  use parser::*;
  use tokenizer::*;

  #[test]
  fn test_operator_registration() {
    let mut parser = Parser::new();

    assert_eq!(parser.process(tokenize_ref!("2=2")).unwrap_err(), ParsingError::UnknownOperator('=', 1));

    parser.register_operator('=', Operator(-1, OperatorAssociativity::Left));

    assert_eq!(parser.process(tokenize_ref!("2=2")).unwrap().tokens.last().unwrap(), &(1, Token::Operator('=')));
  }

  #[test]
  fn test_precedence_and_associativity() {
    let mut parser = Parser::new();

    parser.register_operator('+', Operator(1, OperatorAssociativity::Left));
    parser.register_operator('-', Operator(1, OperatorAssociativity::Left));
    parser.register_operator('*', Operator(5, OperatorAssociativity::Left));
    parser.register_operator('/', Operator(5, OperatorAssociativity::Left));
    parser.register_operator('^', Operator(10, OperatorAssociativity::Right));

    assert_eq!(parser.process(tokenize_ref!("2+2*2")).unwrap().tokens.last().unwrap(), &(1, Token::Operator('+')));
    assert_eq!(parser.process(tokenize_ref!("2*2+2")).unwrap().tokens.last().unwrap(), &(3, Token::Operator('+')));
    assert_eq!(parser.process(tokenize_ref!("2*2/2")).unwrap().tokens.last().unwrap(), &(3, Token::Operator('/')));
    assert_eq!(parser.process(tokenize_ref!("2/2*2")).unwrap().tokens.last().unwrap(), &(3, Token::Operator('*')));
    assert_eq!(parser.process(tokenize_ref!("2*2^2")).unwrap().tokens.last().unwrap(), &(1, Token::Operator('*')));
    assert_eq!(parser.process(tokenize_ref!("2^2*2")).unwrap().tokens.last().unwrap(), &(3, Token::Operator('*')));

    assert_eq!(parser.process(tokenize_ref!("2+2+2")).unwrap().tokens.iter().rev().skip(1).next().unwrap(), &(4, Token::Number(2.0)));
    assert_eq!(parser.process(tokenize_ref!("2^2^2")).unwrap().tokens.iter().rev().skip(1).next().unwrap(), &(3, Token::Operator('^')));
  }

  #[test]
  fn test_symbols() {
    let mut parser = Parser::new();
    parser.register_operator('*', Operator(5, OperatorAssociativity::Left));

    assert_eq!(parser.process(tokenize_ref!("x")).unwrap().tokens.first().unwrap(), &(0, Token::Identifier(0)));
    assert_eq!(parser.process(tokenize_ref!("foobar")).unwrap().tokens.first().unwrap(), &(0, Token::Identifier(0)));

    assert_eq!(parser.process(tokenize_ref!("2x")).unwrap().tokens.len(), 3);
    assert_eq!(parser.process(tokenize_ref!("2x")).unwrap().tokens.last().unwrap(), &(0, Token::Operator('*')));
  }

  #[test]
  fn test_brackets() {
    let mut parser = Parser::new();
    parser.register_operator('+', Operator(1, OperatorAssociativity::Left));
    parser.register_operator('*', Operator(5, OperatorAssociativity::Left));

    assert_eq!(parser.process(tokenize_ref!("2+2*2")).unwrap().tokens.last().unwrap(), &(1, Token::Operator('+')));
    assert_eq!(parser.process(tokenize_ref!("(2+2)*2")).unwrap().tokens.last().unwrap(), &(5, Token::Operator('*')));

    assert_eq!(parser.process(tokenize_ref!("2(14+2)")).unwrap().tokens.last().unwrap(), &(0, Token::Operator('*')));

    assert_eq!(parser.process(tokenize_ref!("(((2)))")).unwrap().tokens.first().unwrap(), &(3, Token::Number(2.0)));
    assert_eq!(parser.process(tokenize_ref!("(((2))+2)")).unwrap().tokens.last().unwrap(), &(6, Token::Operator('+')));
  }

  #[test]
  fn test_missing_brackets() {
    let mut parser = Parser::new();
    parser.register_operator('+', Operator(1, OperatorAssociativity::Left));
    parser.register_operator('*', Operator(5, OperatorAssociativity::Left));

    assert_eq!(parser.process(tokenize_ref!("2+(2(2+2)")).unwrap_err(), ParsingError::MissingBracket(2));
    assert_eq!(parser.process(tokenize_ref!("(2(2+2)")).unwrap_err(), ParsingError::MissingBracket(0));
    assert_eq!(parser.process(tokenize_ref!("2(2+2))")).unwrap_err(), ParsingError::MissingBracket(6));
  }

  #[test]
  fn test_empty_expression() {
    let mut parser = Parser::new();

    assert_eq!(parser.process(tokenize_ref!("")).unwrap_err(), ParsingError::EmptyExpression);
    assert_eq!(parser.process(tokenize_ref!("((()))")).unwrap_err(), ParsingError::EmptyExpression);
  }

  #[test]
  fn test_unknown_tokens() {
    let mut parser = Parser::new();
    parser.register_operator('+', Operator(1, OperatorAssociativity::Left));
    parser.register_operator('*', Operator(5, OperatorAssociativity::Left));

    assert_eq!(parser.process(tokenize_ref!("@2")).unwrap_err(), ParsingError::UnexpectedToken(Token::Unknown('@'), 0));
    assert_eq!(parser.process(tokenize_ref!("2+2*{2+2}")).unwrap_err(), ParsingError::UnexpectedToken(Token::Unknown('{'), 4));
  }

  #[test]
  fn test_arguments() {
    let mut parser = Parser::new();

    assert_eq!(parser.process(tokenize_ref!("foo()")).unwrap().tokens.len(), 1);
    assert_eq!(parser.process(tokenize_ref!("foo(1)")).unwrap().tokens.len(), 2);
    assert_eq!(parser.process(tokenize_ref!("foo(1, 2)")).unwrap().tokens.len(), 3);
    assert_eq!(parser.process(tokenize_ref!("foo(1, 2)")).unwrap().tokens.last().unwrap(), &(0, Token::Identifier(0)));
    assert_eq!(parser.process(tokenize_ref!("foo(-1, 2)")).unwrap().tokens.first().unwrap(), &(4, Token::Number(-1.0)));
  }
}